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Forest microclimate dynamics drive plant responses
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Climate warming is causing a shift in biological communities in favor of warm-affinity species (i.e.,
thermophilization). Species responses often lag behind climate warming, but the reasons for such
lags remain largely unknown. Here, we analyzed multidecadal understory microclimate dynamics in
European forests and show that thermophilization and the climatic lag in forest plant communities are
primarily controlled by microclimate. Increasing tree canopy cover reduces warming rates inside forests,
but loss of canopy cover leads to increased local heat that exacerbates the disequilibrium between
community responses and climate change. Reciprocal effects between plants and microclimates are key
to understanding the response of forest biodiversity and functioning to climate and land-use changes.

C
limate warming is having profound
effects on ecological processes and
biodiversity—and thus on ecosystem
functioning and humanwell-being (1–4).
Our knowledge and predictions about

biotic responses to anthropogenic climate
warming are largely based on air temper-
ature data measured at official meteorological
stations, which record free-air (macroclimate)
temperature in open areas at 1.2 to 2 m above
short grass (5, 6). However, most organisms
on Earth experience temperature conditions
that differ from the macroclimate, mainly be-
cause the topography and vegetation create
heterogeneous microclimates near the ground
through interception of solar radiation, air
mixing, and evapotranspiration (7, 8). Local
microclimates may explain why responses of
biological communities and ecosystem pro-
cesses are often partially uncoupled from
macroclimate warming (6, 9–14).
Range shifts toward higher latitudes and

elevations are now commonly observed for
many species and systems as organisms shift
their geographical distributions to track their
thermal requirements (15). With rising tem-

peratures at a location, the presence or abun-
dance of species adapted to higher temperatures
is therefore expected to increase, whereas spe-
cies adapted to lower temperatures may de-
cline and eventually become excluded. Such
directional shifts in community composition
in favor of warm-affinity species are referred
to as “thermophilization,” a phenomenon that
is increasingly documented in terrestrial and
marine plants and animals (12–14, 16, 17).
However, the thermophilization rate of many
biological communities is not keeping pace
with the velocity of contemporary macro-
climate change (18, 19), leading to a climatic
lag or debt in community responses to macro-
climate warming (10–13). Climatic debt ef-
fects may be the inevitable consequence of
habitat fragmentation, slow dispersal, and
long life spans (20), but the magnitude of the
climatic debt may also be affected by differ-
ent warming rates of localized microclimates.
We know very little about how microclimates
have changed over time, and it is unclear how
any such change has modulated the tempo-
ral thermophilization rate and climatic debt
observed in plant and animal communities

(12–14, 17). Effects of changes in vegetation cover
on microclimates near the ground could have
either accelerated or counteracted the effects of
macroclimate warming on biological communi-
ties, but a long-term, large-scale, and multitaxa
assessment of these effects is currently missing.
Microclimates are perhaps nowhere more

evident than in forests, owing to their three-
dimensional canopy structure that drives shad-
ing, airmixing, and evapotranspirative cooling
(7, 21). The tree canopy buffers forest floor tem-
peratures against extreme heat (9), and this
buffering capacity constantly changes with
tree species, growth, and mortality, leading to
highly dynamic microclimates across space
and over time (22). Accounting for changes in
canopy cover and the associated microclimate
dynamics is therefore important to better un-
derstand the response of forest biodiversity to
climate change. Here, we provide multidecadal
evidence of forest subcanopy temperature
changes, enabling the comparison between
anthropogenic climate change, as measured
by weather stations (macroclimate), and for-
est microclimate dynamics triggered by can-
opy cover changes over time. To this end, we
combined subcanopy temperature measure-
ments in 100 forest stands in temperate for-
est in Europe with 2955 permanent vegetation
plots from 56 regions, where each plot has
been resurveyed over a period of 12 to 66 years
(23) (Fig. 1A and fig. S1). Using a continental-
scale analysis of forest microclimates based on
in situ empirical temperature and canopy cover
data, we then predict changes in understory
temperature during the growing season, build-
ingupon the relationship between canopy cover
and the buffering of macroclimate temper-
atures (21) (Fig. 1, B and C).
We found that temporal changes in canopy

cover varied greatly across the 56 European
regions studied, ranging from –110% (significant
canopy opening) to +113% (strong densification
of the canopy) (1st and 99th percentile of
distribution, respectively), with a mean can-
opy cover change not significantly different
from zero (+2.6%; mixed-effects models P =
0.426; fig. S3). To predict how the micro-
climate in the understory of each plot had
changed between the baseline survey and
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resurvey, we applied a previously published
statistical model to estimate temperature buf-
fering as a function of canopy cover (21, 23)
(fig. S2). The predicted maximum tempera-
tures in the forest understories have signif-
icantly increased over the past decades, with
mean (±SEM) rates of 0.40 ± 0.04 and 0.38 ±
0.03°C per decade for micro- and macrocli-
mate warming, respectively (both estimates
of warming rates are based on mixed-effects
models: P < 0.001). However, the rate of micro-
climate change was 45% more variable (1st
and 99th percentiles: –0.32 to 1.36°C per dec-
ade) than the rate of macroclimate change (1st
and 99th percentiles: –0.08 to 1.08°C per decade)
(fig. S4). The rate of macroclimate change was
significantly (P < 0.001) related to the rate of
microclimate change but left 48% of the total
variation in microclimate change unexplained
(slope: 1.05, R2 = 0.52, P < 0.001) (Fig. 1C).
To quantify the thermophilization, we in-

ferred the thermal affinity for each vascular
plant species present in our dataset from its
current distribution ranges. Using these species-
specific temperature affinity values, we calculated
the rate of change in the community-basedmax-
imum temperature affinity values between the
resurvey and baseline survey (14, 23) (fig. S6).
We expected changes in maximum temper-
ature affinity values to be most closely related
to changes in micro- and macroclimate max-
imum temperatures during the growing season
(23). This biotic reconstruction of temperature
changes based on the observed changes in the

composition of species assemblages has been
widely used to assess community-level cli-
mate change impacts in a variety of terrestrial
and marine taxa (12–14, 16). The resulting ther-
mophilization rates across the 2955 perma-
nent plots ranged from –0.84 to 1.05°C per
decade, with a mean (±SEM) of 0.01 ± 0.01°C
[which was not significantly different from
zero (P = 0.09) (23)]. The thermophilization
rate of forest understory vegetation was
positively linked to the rate of microclimate
warming [scaled slope estimate: 0.02, 95th
confidence interval (CI): 0.01 to 0.03, P <
0.001] but not to macroclimate warming
(scaled slope estimate: –0.002, CI: –0.01 to
0.01, P = 0.70) (Fig. 2).

To quantify how forest microclimate af-
fected the observed climatic debt accumu-
lated by a plant community in a given plot,
we subtracted the thermophilization rate
(DTplant) per unit of time (Dt) from the rate
of microclimate change (DTmicro) per unit of
time [i.e., microclimate debt: (DTmicro/Dt) –
(DTplant/Dt)] and from macroclimate change
(DTmacro) per unit of time [i.e., macroclimate
debt: (DTmacro/Dt) – (DTplant/Dt)] in each focal
plot. Despite very similar means (±SEM) for
the microclimatic debt (0.38 ± 0.04°C per
decade) and macroclimatic debt (0.37 ± 0.04°C
per decade), the climatic debts calculated using
macroclimate data underrepresent the varia-
bility in microclimatic debt (fig. S7). We found
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Fig. 1. Forest microclimate change after canopy cover changes over time
is considerably more variable than macroclimate change. (A) Distribution
of the 2955 resurveyed forest plots (black dots) in 56 regions (purple
circles, scaled to the number of plots as indicated at the top right) across the
temperate forest biome (green area) in Europe. We representatively sampled
microclimate temperature in 100 forest stands, i.e., in 10 stands in each
of 10 regions (black circles; effective n = 96) to estimate the maximum
(macroclimate) temperature buffering during the growing season as a function
of canopy cover (23) (fig. S2). (B) Schematic overview of the method used to
approximate microclimate change in the forest understory. In this example,
canopy cover at the time of the baseline survey was higher than that during
the resurvey, resulting in a decrease in macroclimate temperature buffering
from 2 to 1°C, which in turn led to a relatively larger increase in microclimate

warming (20 to 23°C) compared with macroclimate warming (22 to 24°C). The
relationship between canopy cover and the buffering of maximum macro-
climate temperature was empirically assessed across the study area (fig. S2)
(21). (C) Rate of macroclimate change plotted against the rate of microclimate
change, with the black bisecting line representing the 1:1 relationship. Micro-
and macroclimate have both significantly warmed (see text for statistical
results). The distributions of values in the rates of micro- and macroclimate
change are indicated by gray shading on each axis. Microclimate change rates
are 45% more variable than macroclimate change rates, and macroclimate
change rates only accounted for about half of the variation in microclimate
change rates, as indicated by the marginal (conditional) R2 value of 0.52 (0.69).
All statistical results are based on mixed-effects models with region as a
random-effect (intercept) term.

Fig. 2. Thermophilization in
forest understory plant
communities is related to
microclimate change, not to
macroclimate change. Ther-
mophilization rates increase
with increasing microclimate
warming of maximum tem-
peratures during the growing
season (Tmax), as shown by
the regression slope and 95%
CIs for microclimate. The
thermophilization rate was not
statistically related to the rate
of macroclimate warming
(see text for statistical results).
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the greatest microclimate warming in areas
where canopy cover and thus the temperature
buffering declined, and these were also areas
where the microclimatic debt was greatest
(Fig. 3A). Despite higher thermophilization rates
with increasing microclimate warming (Fig. 2),
locally increased heat caused by a reduction
of canopy cover impedes the ability of under-
story plant communities to respond to such
high rates of warming. On the contrary, we
found lower microclimatic debts in sites with
increased canopy cover; there, temperature
buffering led to a cooling effect during the
growing season. These patterns remain hid-
den when analyzing climatic debts based on
macroclimate data (Fig. 3B). Realistic assess-
ments of the current pressures on communi-
ties caused by climate warming thus require
long-term data on microclimate change.
Canopy cover dynamics have triggeredmicro-

climate changes over time in forest interiors
that can differ considerably from macroclimate
changes outside forests. This has important
implications for predicting biodiversity re-
sponses to climate and land use (e.g., forest
management) change,which interactively drive
the emergence of new thermal environments.
With the predicted increase of heat waves (4),
many species and communitiesmay suffer great-
ly from loss of canopy cover, e.g., after tree
harvesting or dieback (24). The resulting im-
pacts are serious because forests harbor most
of the terrestrial biodiversity andmany ecosys-
tem services and livelihoods critically depend on
forest biodiversity (1, 25). Forest managers and
policy-makers should therefore consider the ef-
fects of different forestmanagement practices on
local microclimates in their endeavors to safe-
guard forest biodiversity in a warming world.
Our results support the hypothesis that the

thermophilization rate in forest understory
plant communities is primarily driven by
the rate of subcanopy microclimate change
(10, 12) and not by the rate of macroclimate

change. This finding provides empirical evi-
dence that microclimate change ultimately
drives organismal responses to climate change,
a frequently ignored fact when using macro-
climate data to study biotic responses to cli-
mate change (8, 26, 27).
Increasing climatic debts in community re-

sponses to climate change mean that a growing
number of species are occurring in suboptimal
climatic conditions, potentially accelerating
the loss of biodiversity. Our results suggest
that microclimates can amplify as well as de-
crease the disequilibriumbetween community
responses and macroclimate change, suggest-
ing that climatic debts based on macroclimate
data (13, 20) should be revisited and inter-
preted with caution. Microclimate data, there-
fore, considerably improve the local relevance
of the climatic debt concept for climate change
impact assessments on biodiversity, a field
that will benefit from emerging datasets and
methods to quantify microclimatic variabil-
ity in space and over time (28, 29). In fact, high
rates of microclimate warming can greatly ex-
ceed the capacity of understory plant species
to spatially track their thermal niche, suggest-
ing that other factors limiting species estab-
lishment, such as plant–water relations (30),
habitat fragmentation, and dispersal limita-
tion, may impede or severely delay commu-
nity responses (11). Such effectsmay outweigh
remedial effects of microclimate variability
to reduce the pressures of climate change on
biological communities, e.g., by providing ther-
mal refuges and facilitating short-distance
thermal niche tracking (27, 31, 32).
In this study, we have provided evidence

that forest community responses to climate
change are most closely related to microcli-
mate change and not to macroclimate change.
Despite widespread evidence for thermophi-
lization trends in plant communities (14, 17),
many community responses are strongly lagging
behind warming, thereby accumulating a cli-

matic debt (10). Growing pressures from woody
biomass extraction and the increasing vulner-
ability of forests to climate change will lead to
frequent canopy cover disturbance and tree
dieback (33). This will severely intensify the
emergence of adverse thermal habitat condi-
tions for many species, impeding the ability of
communities to keep track with anthropo-
genic environmental changes.Our findings also
show that climate change impacts on forest
plant communities have been reduced by higher
standing stocks and associated cooling after
increases in thermal buffering (34). Accounting
for the microclimate in assessments of the im-
pact of global change on forest biodiversity and
functioning is crucial if we are to better under-
stand and counteract the increasing pressures
imposed on forests.
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Fig. 3. Temperature buffering
by canopy cover explains
the climatic debt in forest
plant communities. (A) Climatic
debt calculated based on micro-
climate temperature change (i.e.,
microclimatic debt) increases with
decreasing maximum temperature
(Tmax) buffering after a reduction of
canopy cover [slope: –1.88, marginal
(conditional) R2 = 0.51 (0.75), P <
0.001]. Negative values on the x-axis
represent a warming effect (reduced
canopy cover and thus less Tmax
buffering); positive values represent
a cooling effect (increased canopy
cover and thus more Tmax buffering). (B) Climatic debts calculated using macroclimate temperature change (i.e., macroclimate debt) are only weakly related to differences in
temperature buffering [slope: 0.13, marginal (conditional) R2 = 0 (0.25), P = 0.06]. The linear regression lines are plotted including the 95% CIs (gray bands). The green dots indicate
exemplified micro- and macroclimate debts after the change (reduction) in Tmax buffering illustrated in Fig. 1B.
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