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� Background and aims Dolines are small- to large-sized bowl-shaped depressions of karst surfaces. They may consti-
tute important microrefugia, as thermal inversion often maintains cooler conditions within them. This study aimed to
identify the effects of large- (macroclimate) and small-scale (slope aspect and vegetation type) environmental factors
on cool-adapted plants in karst dolines of East-Central Europe. We also evaluated the potential of these dolines to be
microrefugia that mitigate the effects of climate change on cool-adapted plants in both forest and grassland ecosystems.
�Methods We compared surveys of plant species composition that were made between 2007 and 2015 in 21 dolines
distributed across four mountain ranges (sites) in Hungary and Romania. We examined the effects of environmental
factors on the distribution and number of cool-adapted plants on three scales: (1) regional (all sites); (2) within sites
and; (3) within dolines. Generalized linear models and non-parametric tests were used for the analyses.
� Key Results Macroclimate, vegetation type and aspect were all significant predictors of the diversity of cool-
adapted plants. More cool-adapted plants were recorded in the coolest site, with only few found in the warmest site.
At the warmest site, the distribution of cool-adapted plants was restricted to the deepest parts of dolines. Within
sites of intermediate temperature and humidity, the effect of vegetation type and aspect on the diversity of cool-
adapted plants was often significant, with more taxa being found in grasslands (versus forests) and on north-facing
slopes (versus south-facing slopes).
� Conclusions There is large variation in the number and spatial distribution of cool-adapted plants in karst dolines,
which is related to large- and small-scale environmental factors. Both macro- and microrefugia are therefore likely
to play important roles in facilitating the persistence of cool-adapted plants under global warming.

Key words: Capacity of refugia, East-Central Europe, environmental gradient, high-mountain plants, karst dolines,
migration processes, refugia, relicts, slope aspect.

INTRODUCTION

Anthropogenic climate change poses one of the greatest threats
to biodiversity on our planet (Bellard et al., 2012; Foden et al.,
2013). Studying the effects of past and recent climate change
on biodiversity can help us predict the likely impact of future
change (Walther et al., 2002; Lenoir et al., 2008). Species re-
sponded to past and ongoing climate change by range-shifting
(Holt, 1990; Wilson et al., 2005; Chen et al., 2011) and by per-
sisting in habitats that are environmentally more stable (Willis
et al., 2000). As a result of these processes in response to
Pleistocene and Holocene climatic fluctuations, many species,
such as the mountain avens (Dryas octopetala s.l.) in arctic/al-
pine regions of the northern hemisphere, have highly frag-
mented distributions (Skrede et al., 2006).

Range shifts in response to climate change are well docu-
mented and facilitated the persistence of species at lower lati-
tudes during the last glacial maximum (Taberlet et al., 1998;
Davis and Shaw, 2001; Hampe and Petit, 2005). Similarly, more
recent increases in temperature as a result of ongoing climate
change have led to upward shifts in species distributions
(Pe~nuelas and Boada, 2003; Gottfried et al., 1999; Walther et al.,
2002). Lenoir et al. (2008) found that mountainous and small
grassy species showed a larger shift in the optimum elevation
than ubiquitous and large woody ones in the last century, high-
lighting that montane (cool-adapted) species are especially sensi-
tive to climate change (Thuiller et al., 2005; Engler et al., 2011).

Cool-adapted species tend to occur in climatically diverse re-
gions, where they would have survived previous climatic fluc-
tuations by tracking their preferred habitat (Ohlemüller et al.,
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2008). Many cool-adapted species in East-Central Europe have
relatively wide distributions (Theurillat and Guisan, 2001), but
their occurrence is often restricted to specific habitats (e.g. to
ravine forests and north-facing rock-swards) (cf. Kir�aly, 2009).
The majority of cold-adapted species prefer non-forested habi-
tats (cf. Totland and Alatalo, 2002; Skrede et al., 2006), which
provide cooler temperature extremes (B�ar�any-Kevei, 1999).

Cool- and cold-adapted endemic plant taxa are especially
vulnerable to climate change (e.g. Kutnjak et al., 2014).
Species distribution models suggest that many cool-adapted
plant species in East-Central Europe will undergo range shifts
and are likely to disappear from lower altitudes as a response to
ongoing climate change (Theurillat and Guisan, 2001). For ex-
ample, the population size of the one-sided wintergreen
(Orthilia secunda) and yellow bird’s nest (Monotropa hypop-
itys), which are considered good indicators of cool habitats in
Hungary and Romania (Borhidi, 1995; Sârbu et al., 2013), are
predicted to significantly decrease in the Carpathian Basin by
2100 (Beatty and Provan, 2011).

Stable habitats buffered from regional environmental change
are known as ‘refugia’ (Ashcroft, 2010; Stewart et al., 2010;
Keppel et al., 2012). While ‘refugia’ initially referred to places
where species survived the effects of glaciations during the
Last Glacial Maximum (Dahl, 1946), the term has also been
applied to safe havens from recent and future climate change
(e.g. Loarie et al., 2008; Keppel et al., 2012). Furthermore, the
term ‘microrefugia’ has been used to refer to sites with locally
favourable environmental conditions amidst unfavourable re-
gional environments, which allow species to maintain viable
populations outside of their main distributions (Rull, 2009,
2010; Gentili et al., 2015a). Such microrefugia may result from
convergent environments, such as basins, local depressions and
deep valleys (Fridley, 2009; Dobrowski, 2010; Gentili et al.,
2015b). Similarly, vegetation may modify regional climatic
trends to provide more buffered environmental conditions (De
Frenne et al., 2013; Scheffers et al., 2014).

Karst dolines (sinkholes), small to large-sized bowl-shaped de-
pressions of karst surfaces (Li et al., 2007), may constitute im-
portant microrefugia (B�atori et al., 2014a), as thermal inversion
maintains cooler conditions within them and north-facing slopes
receive less sunlight (cf. Geiger, 1950; Whiteman et al., 2004;
B�atori et al., 2011). As a result, more cool-adapted plants should
be found on the north-facing slopes and bottoms of dolines
(Beck v. Mannagetta, 1906; €Ozkan et al., 2010; Surina and
Surina, 2010; Kobal et al., 2015). In addition, the bottoms of do-
lines receive more water and nutrients, producing higher humid-
ity and soil moisture (B�atori et al., 2009, 2011). Because some
refugia would have a higher capacity to act as safe havens for
biodiversity in changing climates (Keppel et al., 2015; Keppel
and Wardell-Johnson, 2015), it is important to understand what
factors make some dolines better refugia for cool-adapted plants
than others.

In this study we focus on the capacity of dolines to provide
cooler microclimates, which would make them crucial refugia
for the survival of cool-adapted plants under ongoing global
warming. We investigate the effects of both large- (macrocli-
mate) and small-scale (slope aspect and vegetation type) factors
on the number and distribution of cool-adapted plant taxa in do-
lines of four mountainous ranges [in the submontane and mon-
tane zones, up to 1400 m above sea level (m.a.s.l.)] along a

natural gradient of decreasing temperature and increasing hu-
midity in Hungary and Romania. We predicted that the number
of cool-adapted plants would increase with cooler macrocli-
matic conditions. If karst dolines do constitute microrefugia,
cool-adapted species should be more restricted to cooler micro-
habitats in warmer than in cooler mountainous ranges.

MATERIALS AND METHODS

Study sites and sampling

Fieldwork was done in East-Central Europe during the sum-
mers between 2007 and 2015 in forested and non-forested do-
lines of three Hungarian mountainous areas (Aggtelek Karst
area, Bükk Mountains and Mecsek Mountains) and one
Romanian (Bihor Mountains) mountainous area, surrounding
the Hungarian Great Plain (Fig. 1A). The sites can be arranged
according to their macroclimatic conditions as follows:
Mecsek, moderately warm and moderately humid [altitude (A)
300–500 m.a.s.l.; average temperature (Ta) 9�5 �C; average pre-
cipitation (Pa) 740 mm]; Aggtelek, moderately cool and moder-
ately humid (A 500–600 m.a.s.l.; Ta 8�3 �C; Pa 680 mm); Bükk,
cool and humid (A 700–900 m.a.s.l.; Ta 6�3 �C; Pa 800 mm)
and Bihor, cold and very humid (A 1200–1400 m.a.s.l.; Ta 5 �C;
Pa 1400 mm) (Feurdean and Willis, 2008; Dövényi, 2010).
They hence constitute a natural gradient of decreasing tempera-
ture and increasing humidity.

Forested dolines were covered by beech, oak–hornbeam and
ravine forests in Mecsek, oak–hornbeam and scree forests in
Aggtelek, montane beech forests in Bükk and montane beech
and spruce forests in Bihor. Non-forested dolines were covered
by semi-dry to dry grasslands and mountain hay meadows in
Aggtelek and Bükk and by semi-dry and mountain hay mead-
ows and pastures in Bihor. Non-forested dolines were absent in
Mecsek. Forest canopy cover was 75–90 % in forested dolines
and grassland cover 75–100 % in non-forested dolines. The
cover of the herb layer in forested dolines was variable.

We selected 21 solution dolines (Williams, 2004) that met the
following criteria: (1) diameters were between 60 and 150 m and
depths between 10 and 25 m, shapes were uniformly round or
slightly elliptic with similar (range 0�11–0�24) depth/diameter
ratios (vegetation characteristics are similar within this size range;
B�atori et al., 2009, 2014a) (Supplementary Data Table S1); (2)
vegetation cover was semi-natural (no signs of logging, low
abundance of non-native species); and (3) signs of disturbance
were few (e.g. low current grazing pressure with negligible effect
on vegetation composition and structure, low rate of game dam-
age and wind-induced tree mortality). At each site three forested
and three non-forested dolines were selected except at Mecsek,
where only three forested dolines were chosen (non-forested do-
lines were absent). We defined non-forested dolines as having a
total tree cover <25 % and transects were established to pass
through only non-forested (i.e. grassland) vegetation (Fig. 1B, G).

Because the greatest differences in species composition were
expected between the north- and south-facing doline slopes
(B�atori et al., 2014a, b), we established a transect with north-to-
south orientation across each doline, traversing the deepest points
(Fig. 1G). Transects began and ended on doline rims. Each tran-
sect consisted of 1 �1-m plots spaced at 2-m intervals. We re-
corded the presence/absence of all herbs and shrubs in all plots.
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FIG. 1. (A) Location of the study sites in Hungary and Romania. 1, Mecsek Mountains; 2, Aggtelek Karst area; 3, Bükk Mountains; 4, Bihor Mountains. (B) A non-
forested doline with Norway spruce (Picea abies) individuals in Bihor. (C–F) Some cool-adapted plants in the investigated dolines. (C) Alpine woundwort (Stachys
alpina), Mecsek. (D) Carline thistle (Carlina acaulis), Aggtelek. (E) Wolfsbane (Aconitum variegatum s.l.), Bükk; (F) Orange hawkweed (Pilosella aurantiaca ssp.

aurantiaca), Bihor. (G) Transect sampling in a non-forested doline of Bükk.
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Transects were coded using capital letters for the study area
(A, Aggtelek; BI, Bihor; B€U, Bükk; M, Mecsek), small letters
for the vegetation types (f, forest; g, grassland), and numbers:
Mf1–Mf3; Ag1–Ag3; Af1–Af3; B€Ug1–B€Ug3; B€Uf1–B€Uf3; BIg1–
BIg3; BIf1–BIf3 (Table S1).

Defining cool-adapted plant taxa with relative temperature indi-
cator values

Relative ecological indicators (values providing an indication
about the niche of a species relative to other plant species in the
area) are frequently used to assess the environmental character-
istics of an area (Tölgyesi et al., 2014). The concept was de-
veloped for the characterization of Central European habitats
with seven factors (continentality, light, productivity/nutrients,
soil acidity, soil moisture, soil salt content and temperature)
(Ellenberg et al., 1992). Each species has a value for each fac-
tor, which expresses the realized optimum of the species on a
nine-degree ordinal scale (except soil moisture, with a 12-de-
gree scale) defined along environmental gradients. The system
has been adapted for the floras of several countries, such as
Great Britain (Hill et al., 1999), Hungary (Borhidi, 1995),
Poland (Zarzycki, 1984) and Romania (Sârbu et al., 2013).

Prior to our analyses, we classified each plant taxon accord-
ing to its relative temperature indicator (T) value, ranging from
1 (affinity for the coolest habitats) to 9 (affinity for the warmest
habitats). We considered both the Hungarian (Borhidi, 1995)
and Romanian (Sârbu et al., 2013) systems, which are mostly
similar (Supplementary Data Table S2). In this study, we used
the term ‘cool-adapted plant’ for plants that have an indicator
value of 3 or 4 for temperature in at least one of the two sys-
tems (Fig. 1C–F). Species with T indicator values of 1 or 2
were not present in the studied dolines. The scientific names of
cool-adapted plants found along the transects are listed in
Supplementary Data Table S3.

Taxonomy and species information (e.g. distribution) follow
Sârbu et al. (2013).

Statistical analyses

Analyses were conducted at various scales: across all sites
(regional); within sites; and within dolines (see below). All ana-
lyses were carried out in R (R Development Core Team, 2015).
A generalized linear model (GLM) was performed using the
glm.nb function from the MASS package (Venables and Ripley,
2002), generalized mixed effect models (GLMMs) with the
glmmadmb function from the glmmADMB package (Fournier
et al., 2012; Skaug et al., 2013), and automated model selection
with the help of the dredge function from the MuMIn package
(Barto�n, 2013). When an averaged best model was used, the ef-
fects of different explanatory factors were averaged across the
models with D < 4 (Grueber et al., 2011). The relevel function
was used to carry out post hoc sequential comparisons among
the different factor levels when performing GLM and GLMMs.
We applied sequential Bonferroni–Holm corrections to deter-
mine the exact significance levels in these cases.

Regional scale A GLM (negative binomial error) was used to
test the effect of macroclimate on the number of cool-adapted
plants in the different dolines, with macroclimate as the sole

explanatory variable (N ¼4). Because available climatic data
for the study area are based on few climate stations, limiting
the reliability of available, extrapolated climate layers (cf.
Soria-Auza et al., 2010), we coded the macroclimate in broad
categories of increasing coolness and humidity (moderately
warm and moderately humid, moderately cool and moderately
humid, cool and humid, and cold and very humid) according to
Dövényi (2010). The number of cool-adapted plants found in
each plot was summed for each doline (Ntotal¼ 21), and
included in the model as dependent variable.

We used GLMMs (negative binomial errors) to test the global
and site-level effect of vegetation type (grassland and forest) and
slope aspect (south- and north-facing) on the number of cool-
adapted plants of dolines except Mecsek, where the data were
not overdispersed and a Poisson error term was used. In the glo-
bal model the different variables, such as vegetation type and as-
pect, were included as explanatory variables (i.e. fixed factors)
and the mountain range (¼ macroclimate) as random factor. The
number of cool-adapted plants found in each plot was summed
for each slope (Ntotal¼ 42, 21 south-facing and 21 north-facing
slopes), and included in the model as dependent variable.

Within sites Separate GLMMs were built for each site, with
vegetation type (grassland and forest) and aspect (south- and
north-facing) as fixed factors and the different dolines as ran-
dom factors. The dependent variable was the summed number
of cool-adapted plants found in the plots of a slope (Ntotal ¼12,
6 south- and 6 north-facing slopes in all sites but Mecsek;
Ntotal¼ 6, 3 south- and 3 north-facing slopes). We also com-
pared the number of cool-adapted plants of both the forested
and non-forested south- and north-facing doline slopes of each
site using Mann–Whitney U tests on the number of cool-
adapted plants within each plot.

Within dolines The local differences between the south- and
north-facing slopes within each doline were compared with
Mann–Whitney U tests, using the number of cool-adapted
plants within each plot. In addition, the occurrences of cool-
adapted plants were plotted using kite diagrams, which indicate
the diversity of cool-adapted plants along the transect through
the thickness of the shaded area.

RESULTS

Cool-adapted plant taxa

A total of 83 cool-adapted plants (6 in Mecsek, 15 in Aggtelek,
21 in Bükk and 66 in Bihor) were recorded in the 21 dolines
(Table S3). These included 18 circumpolar, 16 Eurasian, 8
European, 6 Carpathian (endemic or subendemic), 6 Central
European, 5 Alpine and Carpathian, 5 Alpine, Carpathian and
Balkan, 4 Central European and sub-Mediterranean, and 3
cosmopolitan plants. The remaining 12 taxa belonged to vari-
ous groups (e.g. European and North European plants).

Regional scale

The effect of macroclimate on the number of cool-adapted
plants was significant (GLM 3�96 < z < 9�16, P < 0�001), ex-
cept between Aggtelek and Bükk (z ¼ 1�31). The coolest site
(Bihor) had the most and the warmest site (Mecsek) had the
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least cool-adapted plants. Considering the effects of slope as-
pect and vegetation type, the best model contained both vari-
ables (i.e. full model), so no model averaging was needed. The
global effect of vegetation type and aspect was significant
(GLMM z ¼ 3�01, P < 0�01 and z ¼ 2�9, P < 0�01, respect-
ively). The number of cool-adapted plants was higher in the
non-forested dolines and on the north-facing slopes.

Within sites

For the three sites with forested and non-forested dolines
(Aggtelek, Bükk, Bihor), the averaged best GLMMs contained
both aspect and vegetation type (Tables 1–3). The number of

cool-adapted plants on the south- and north-facing slopes dif-
fered significantly in Aggtelek (GLMM z ¼ 2�1, P ¼ 0�03), but
not in Mecsek (z ¼ �1�05), Bükk (z ¼ 1�8) and Bihor
(z ¼ 1�9). The effect of vegetation type on the number of cool-
adapted plants was significant in Bükk (z ¼ 2�06, P ¼ 0�039)
but not in Aggtelek (z ¼ 1�45) and Bihor (z ¼ 0�88).
Differences between the number of cool-adapted plants on
south- and north-facing slopes were significant in the non-
forested dolines of Aggtelek (Mann–Whitney W ¼ 430�5,
P < 0�001) and Bükk (W ¼ 446�5, P < 0�001) and in the for-
ested dolines of Bihor (W ¼ 596�5, P < 0�05) (Fig. 2).

Within dolines

Aspect did not have a significant effect on the number of
cool-adapted plants in Mecsek (Mann–Whitney 219�5 < W <
390�5). In Aggtelek, however, the difference between the south-
and north-facing slopes was significant in each non-forested do-
line (Ag1–Ag3) (26 < W < 66�5, P < 0�001) and not significant
in forested dolines (Af1–Af3) (77�5 < W < 153). We did not
find any significant difference in the forested dolines of Bükk
(B€Uf1–B€Uf3) (43 < W < 131), but in two non-forested dolines

TABLE 1. Average best GLMM explaining the number of cool-
adapted plants in the dolines of the Aggtelek Karst area

Model d.f. logLIK AICc D Weight

Slope aspect 3 �39�57 88�14 0 0�59
Null 2 �42�14 89�62 1�47 0�28
Slope aspect þ vegetation type 4 �38�69 91�1 2�96 0�13

TABLE 2. Average best GLMM explaining the number of cool-
adapted plants in the dolines of the Bükk Mountains

Model d.f. logLIK AICc D Weight

Vegetation type 3 �43�65 96�29 0 0�45
Null 2 �45�91 97�14 0�85 0�29
Slope aspect þ vegetation type 4 �42�2 98�11 1�81 0�18
Slope aspect 3 �45�46 99�93 3�63 0�07

TABLE 3. Average best GLMM explaining the number of cool-
adapted plants in the dolines of the Bihor Mountains

Model d.f. logLIK AICc D Weight

Vegetation type 3 �56�07 121�14 0 0�46
Null 2 �58�11 121�55 0�41 0�37
Slope aspect þ vegetation type 3 �57�69 124�38 3�24 0�09
Slope aspect 4 �55�44 124�59 3�45 0�08
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FIG. 2. Number of cool-adapted plant taxa in the dolines (Mf–BIf) of Hungary and Romania in site-level comparison. Boxes indicate the interquartile ranges, horizon-
tal lines in the boxes are the medians, whiskers include all points within one interquartile range from the boxes and open circles indicate outliers from this range.
Lower-case letters f and g indicate forested and non-forested dolines, respectively. Capital letters S and N indicate slope aspects (N, north-facing; S, south-facing).
Significant differences in the number of cool-adapted plants on the forested and non-forested south- and north-facing slopes are indicated by asterisks (*P< 0�05;

***P< 0�001).
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the difference was significant (B€Ug2 and B€Ug3) (19 < W < 85,
P ¼ 0�03 and P < 0�001, respectively). In Bihor, differences be-
tween the south- and north-facing slopes were not significant in
the non-forested dolines (BIg1–BIg3) (23 < W < 71�5), but they
were in one forested doline (BIf3) (W¼ 53�5, P ¼ 0�01). As
shown in the kite diagrams (Fig. 3), the distribution of cool-
adapted plants in the dolines of Mecsek was restricted to the
deepest parts of the depressions. In the non-forested dolines of
Aggtelek, cool-adapted plants predominantly occurred on north-
facing slopes, while in Bükk and Bihor, cool-adapted plants
colonized all parts of doline slopes.

DISCUSSION

The role of large- and small-scale environmental factors

Our results show that the number and distribution of cool-
adapted plant taxa in karst dolines are determined by both

large- and small-scale environmental factors. As predicted, sites
with cooler and more humid macroclimates had higher numbers
of cool-adapted plants. Similarly, a greater number of cool-
adapted plants occurred on north-facing slopes, which receive
less solar radiation and as a result have cooler microclimates
(Jakucs, 1971; Rorison et al., 1986). This aspect-related effect
was particularly strong at the non-forested sites of intermediate
suitability (Aggtelek and Bükk, with regard to macroclimate),
as the least suitable site (Mecsek) had very few and the most
suitable site (Bihor) had uniformly abundant numbers of cool-
adapted plants (Fig. 3).

In the least suitable site, cool-adapted plants were restricted
to the lowest parts of depressions (i.e. in doline bottoms), while
they occurred on both upper and lower slopes in the cooler and
more humid climates of North Hungary and Romania (Fig. 3).
Indeed, cool-adapted plant taxa occur almost exclusively in do-
lines, deep valleys and sometimes on north-facing slopes in
Mecsek (B�atori et al., 2012) and Aggtelek (B�atori et al., 2014b;

Mf1

***
***

***

***

**

*

South-facing

Number of cool-adapted plant taxa

North-facing

Mf2

Mf3

Ag1

Ag2

Ag3

Af1

Af2

Af3

BÜg1

BÜg2

BÜg3

BÜf1

BÜf2

BÜf3
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BIg2

BIg3

One taxon:BIf1

BIf2

BIf3

FIG. 3. Kite diagrams of cool-adapted plant taxa along the doline transects in Hungary and Romania (Mf1–BIf3). Forested dolines are indicated in black and non-for-
ested dolines in green. The red dashed line shows the deepest point of dolines, where slope exposure changes. Significant differences in the number of cool-adapted

plants between the south- and north-facing slopes are indicated by asterisks (*P< 0�05; **P¼ 0�01; ***P< 0�001).
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Vir�ok et al., 2014), while they also occur in the surroundings of
dolines in the cooler macroclimates of Bükk (Vojtk�o, 2001)
and Bihor (Z. B�atori, pers. commun.). This highlights dolines
as important microrefugia under warmer and less humid
conditions.

Forested dolines contained fewer cool-adapted plants than
non-forested ones. Extreme temperature, humidity and wind
occur more frequently in non-forested depressions (cf. B�ar�any-
Kevei, 1999; B�atori et al., 2014c), resulting in a more variable
microhabitat structure and presumably greater opportunities for
cool-adapted plants. This is supported by other studies finding
greater numbers of cool-adapted plants residing in non-forested
than in forested habitats (cf. Vanderplank et al., 2014; Mr�az
et al., 2016).

The explanation for the observed patterns is complex and is
related to the combined effects of macro- and microclimate
(B�atori et al., 2011, 2014a), individual species responses to cli-
matic variation (Hylander et al., 2015) and vegetation cover
(De Frenne et al., 2013; Mr�az et al., 2016). Our results corres-
pond well with those for Europe in general, where refugial
areas for cool- and cold-adapted species are primarily found at
high elevations (mountains) at lower latitudes, and low to high
elevation (from lowland to mountains) at higher latitudes
(Stewart et al., 2010; Ohlemüller et al., 2012). They also high-
light the importance of microhabitats, such as fens and bogs,
slopes of V-shaped valleys and deep depressions, where local
climatic conditions are similar to those of mountaintops
(Rorison et al., 1986; Daly et al., 2010, Dobrowski, 2010).

The capacity of karst dolines as future refugia

Several studies indicate that cool and humid dolines in
Europe have supported plant populations outside their species’
ranges along both the north-to-south (latitudinal) and oceanic-
to-continental (longitudinal) migration axes during past
Quaternary climate change (Stewart et al., 2010). For example
the dragon’s head (Dracocephalum ruyschiana), a Eurasian
floristic element occurring from the boreal–sub-boreal regions
to the temperate zone, likely maintained a viable population in
a large doline of North Hungary (Bükk), far from its main dis-
tribution (Kir�aly, 2009; Lazarevi�c et al., 2009). Similar ex-
amples have been provided by Horvat (1953) from the Balkan
Peninsula and by Atalay (2006) from the Taurus Mountains
(Turkey, Asia).

The ongoing regional warming in East-Central Europe is pre-
dicted to continue as a result of anthropogenic climate change
(Bartholy et al., 2008; Pongr�acz et al., 2011). Based on their
past and current ability to facilitate persistence, karst dolines
are likely to provide important microrefugia that will facilitate
the persistence of cool-adapted plant taxa outside their macro-
climatic envelope. However, species will respond individualis-
tically to environmental change (Stewart et al., 2010) and
responses will differ from those in the past because past climate
changes differ from the one currently experienced (Williams
et al., 2007).

Our results suggest that microrefugia at higher elevations
and latitudes are likely to play important roles in facilitating
species persistence. This corresponds to previous findings that
plant responses to climate changes vary across elevational

gradients and forest types (Sykes and Prentice, 1996; Lindner
et al., 2010). Therefore, populations of cool-adapted plants in
dolines of the least suitable site in South Hungary may be espe-
cially vulnerable to climate change. Presumably, they exist at
the limits of their environmental tolerances and are unlikely to
be able to shift their distribution towards cooler places. More
suitable sites (North Hungary and Romania) are likely to pro-
vide suitable habitats for a longer time.

Within dolines, north-facing slopes will provide more suit-
able habitats for longer, corresponding to cooler and more sta-
ble microclimate on these slopes (cf. Rorison et al., 1986; Daly
et al., 2010; Maclean et al., 2016). This could allow species to
shift their distributions towards the cooler and more stable
microclimates of north-facing slopes and lower parts of dolines
(B�atori et al., 2011). Dolines may also play an important role in
facilitating the long-term survival of cool-adapted endemic
plant taxa (cf. Table S3). These taxa have a narrow distribution
and their survival may therefore largely depend on the presence
of appropriate microhabitats (Pauli et al., 2012; Malanson et al.
, 2015).

However, climate change will influence the distribution not
only of cool-adapted species, but also that of other species. The
distributions of the tree species oak (Quercus spp.), European
beech (Fagus sylvatica) and Norway spruce (Picea abies) in
Central Europe are likely to shift upwards (Cuculeanu et al.,
2002; Geßler et al., 2007; Cz�ucz, 2011; Hl�asny et al., 2011).
Oak distributions are predicted to shift to elevations above
400–500 m.a.s.l., optimum conditions for beech will likely shift
to around 1200 m.a.s.l., and spruce production will decline at
lower elevations and increase in the elevation range 1250–
1550 m. This means that low-lying dolines (300–600 m.a.s.l.)
in East-Central Europe could also become refugia for beech,
higher-lying dolines (600–1000 m.a.s.l.) for montane beech and
high-lying dolines (>1000 m.a.s.l.) for montane beech and pine
forest species.

Resource-gaining sites are also sometimes considered refugia
(Schut et al., 2014). The doline bottoms are such resource-
gaining sites, receiving more nutrients and moisture (B�atori
et al., 2009, 2011) and are hence potential microrefugia for a
variety of functional groups, in addition to cool-adapted spe-
cies. For example, marsh and wet-woodland plants (mostly not
cool-adapted) do occur at the bottom of dolines, indicating high
moisture conditions (cf. B�atori et al., 2012). Further investiga-
tions are necessary to determine the effects of the various envir-
onmental properties found in dolines on the occurrence of
various functional groups in these microhabitats.

Our study confirms karst dolines as important refugia for
many plant taxa. The capacity of these microrefugia to enable
the persistence of plants depends on both large- and small-scale
environmental factors. Our results provide a first indication of
what these factors are. They can be used as a space-for-time
substitution and suggest that the buffering capacity of the East-
Central European karst doline microrefugia increases with
cooler macroclimates (higher elevations and latitudes) and with
cooler (north-facing) aspects. Determining the potential impacts
of climate change on these microrefugia allows their protection
and the selection of the most appropriate conservation
strategies.
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SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxfordjour
nals.org and consist of the following. Table S1: location, alti-
tude (alt), diameter (di), depth (de) and depth/diameter ratio (r)
of the studied dolines. Capital letters (M–BI) refer to study sites
(M, Mecsek; A, Aggtelek; B€U, Bükk; BI, Bihor) and small let-
ters to vegetation types (f, forest; g, grassland). Table S2: tem-
perature indicator values according to the Hungarian and
Romanian systems. Table S3: scientific names of the cool-
adapted plant taxa of the doline transects in Hungary and
Romania. The names of endemic and subendemic plant taxa
are underlined.

ACKNOWLEDGEMENTS

This research was supported by the European Union,
Hungary, and co-financed by the European Social Fund in the
framework of T�AMOP 4.2.4. A/2-11-1-2012-0001 ‘National
Excellence Program’.

LITERATURE CITED

Ashcroft MB. 2010. Identifying refugia from climate change. Journal of
Biogeography 37: 1407–1413.

Atalay I. 2006. The effects of mountainous areas on biodiversity: a case study
from the Northern Anatolian Mountains and the Taurus Mountains. Grazer
Schriften der Geographie und Raumforschung 41: 17–26.

Bartholy J, Pongr�acz R, Gelyb�o G, Szab�o P. 2008. Analysis of expected cli-
mate change in the Carpathian Basin using the PRUDENCE results.
Id}oj�ar�as 112: 249–264.

Barto�n K. 2013. MuMIn: Multi-model inference. R package version 1.9.13.
http://CRAN.R-project.org/package¼MuMIn. Published online 29 October
2013.

B�ar�any-Kevei I. 1999. Microclimate of karstic dolines. Acta Climatologica
Universitatis Szegediensis 32–33: 19–27.

B�atori Z, Csiky J, Erd}os L, Morschhauser T, Török P, Körmöczi L. 2009.
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