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Abstract The Palearctic forest-steppe biome is a narrow vegetation zone between the

temperate forest and steppe biomes, which provides important habitats for many endan-

gered species and represents an important hotspot of biodiversity. Although the number of

studies on forest–grassland mosaics is increasing, information currently available about the

general compositional and structural patterns of Eurasian forest-steppes is scarce. Our

study aimed to compare the habitat structure, species composition and diversity patterns of

two distant sandy forest-steppes of Eurasia. We compared 72 relevés made in the main

habitat components (forest, forest edge and grassland) of sandy forest-steppes in three

Hungarian and three Kazakh sites. The size of the plots was 25 m2. Species number,

Shannon diversity and species evenness values were calculated for each plot. Fidelity

calculations and linear mixed effects models were used for the analyses. We found that the

vegetation and diversity patterns of the two forest-steppes are similar and their components

play important roles in maintaining landscape-scale diversity. Despite the higher species

Communicated by Daniel Sanchez Mata.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10531-017-
1477-7) contains supplementary material, which is available to authorized users.

& Zoltán Bátori
zbatory@gmail.com

1 Department of Ecology, University of Szeged, Közép fasor 52, Szeged 6726, Hungary
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richness in Hungary, Shannon diversity was higher in Kazakhstan. The deciduous forest

edges of both areas had significantly higher species richness than the neighbouring habitats

(forests and grasslands); therefore they can be considered local biodiversity hotspots. Due

to the special characteristics of this vegetation complex, we emphasize the high conser-

vation value of all landscape components as a coherent system throughout the entire range

of the Eurasian forest-steppe biome.

Keywords Conservation � Endemic plant � Forest edges � Hungary � Kazakhstan � World

heritage site

Introduction

The Palaearctic forest-steppe is a distinct vegetation zone between the temperate forest and

steppe biomes, ranging from East-Central Europe in the west almost to the Pacific Ocean in

the east (Lavrenko 1969; Walter and Breckle 2002; Zlotin 2002). The main characteristic

of this zone is the alternation of forest patches with grasslands, resulting in a composi-

tionally, microclimatically and structurally complex habitat mosaic (Erd}os et al. 2014).

Due to the complex biotic interactions among the main components (forest, forest edge and

grassland), forest-steppes play an important role in preserving many species with different

habitat requirements and hence maintaining landscape-scale diversity (Molnár et al. 2012;

Erd}os et al. 2013a). They also provide refuges for many rare and threatened animals and

plants and have been recognised as an important hotspot of biodiversity (Zlotin 2002;

Habel et al. 2013; Kamp et al. 2016). In addition, forest-steppes can attain relatively high

net primary production rates, considerable biomass and carbon sequestration capacity

(Müller 1981; Zlotin 2002; Schultz 2005). Structurally similar grassland–forest mosaics

exist in the Middle East, Central Asia, southwestern Inner Asia and in the Eastern Tibetan

Plateau (cf. Wesche et al. 2016).

The canopy of the forest component in the forest-steppe biome is primarily composed of

deciduous trees (Acer, Betula, Carpinus, Fraxinus, Populus, Quercus, Tilia and Ulmus

spp.) in Southeast and East Europe (Horvat et al. 1974; Chibilyov 2002; Chytrý 2012;

Korotchenko and Peregrym 2012; Molnár et al. 2012), deciduous (Betula, Larix, Populus

and Ulmus spp.) and evergreen (Pinus sylvestris) trees in West Siberia, North Kazakhstan

and Inner Asia (Lavrenko and Karamysheva 1993; Shahgedanova et al. 2002; Dulamsuren

et al. 2005; Rachkovskaya and Bragina 2012; Mathar et al. 2016), and deciduous trees (e.g.

Betula, Quercus and Tilia spp.) in the Far East (Ivanov 2002; Zhang et al. 2006; Liu et al.

2015). The steppe component is dominated by grasses, mainly feather grasses (Stipa spp.)

and fescues (Festuca spp.) throughout the biome (Lavrenko and Karamysheva 1993;

Wesche et al. 2016). The term zonal forest-steppe is used to distinguish forest-steppes

whose distribution and species composition are predominantly determined by macrocli-

mate (i.e. precipitation and temperature) from forest-steppes constrained by edaphic (i.e.

soil-related) conditions (Molnár et al. 2012). For instance, the loess steppe–oak forest

mosaics on chernozem soils in East-Central Europe belong to the zonal group (Borhidi

et al. 2012). However, the xeric sandy grassland–forest mosaics of the biome belong to the

edaphic group, since their soil is coarse textured, humus-poor and has a low water-holding

capacity (Rachkovskaya and Bragina 2012; Erd}os et al. 2013a). There is a discussion about

forest-steppes that owe their existence to human activities (e.g. forest clearing, grazing or

burning), but they cannot be considered zonal either (cf. Dulamsuren et al. 2005; Erd}os

et al. 2013b).
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Diversity patterns of forest-steppes are determined by habitat structure and vegetation

history. Species diversity of forest-steppes may be exceedingly high in areas where

environmental conditions and/or anthropogenic effects have favoured both forest and

grassland persistence throughout the Holocene (cf. Dengler et al. 2012; Feurdean et al.

2015; Novenko et al. 2016). Due to the relatively low canopy closure, the forest component

may share a large number of plants with grasslands (Ermakov and Maltseva 1999).

Therefore, the spatial mass effect (Shmida and Ellner 1984) plays a crucial role in

determining species diversity and vegetation dynamics in forest-steppe ecosystems

(Mathar et al. 2016). In addition, the edges of forest patches may have an important role in

maintaining species diversity (Erd}os et al. 2013a). Edges are essential components of

ecosystems, since they control the ecological flows between habitat patches (Wiens et al.

1985; Cadenasso et al. 2003), influence landscape dynamics (Risser 1995; Peters et al.

2006) and species interactions (Fagan et al. 1999), and may serve as habitats for a wide

variety of organisms (Kolasa and Zalewski 1995; Erd}os et al. 2014). Edges often act as

local biodiversity hotspots, because they may contain species from neighbouring com-

munities as well as own species (Odum 1971; Pianka 1983; Risser 1995). In other cases,

diversity at edges may also be intermediate (van der Maarel 1990), or similar to one of the

two neighbouring communities (Erd}os et al. 2011).

In Europe, extensive near-natural forest-steppes have only been preserved in areas that

are less suitable for agriculture or where the level of legal protection is high (Biró et al.

2013; Zólyomi and Fekete 1994; Eliáš et al. 2013). The majority of forest-steppes has been

destroyed or severely degraded by land transformation in the past centuries (Korotchenko

and Peregrym 2012; Smelansky and Tishkov 2012; Deák et al. 2016). A large proportion of

the steppe component has been converted into croplands and plantations of non-native

trees (e.g. Pinus nigra and Robinia pseudoacacia), while many forest patches have been

logged or replaced with plantations (Berg 1958; Parnikoza and Vasiluk 2011; Molnár et al.

2012). However, human impacts have been less intense in the Asian forest-steppes

(Lavrenko and Karamysheva 1993; Zlotin 2002); thus, they could persist in relatively large

areas. Nevertheless, the biodiversity of both European and Asian forest-steppes is expe-

riencing novel threats posed by climate change. Climate change scenarios predict the

increase of mean annual temperature and summer drought in the zone, contributing to the

increase of wildfires (Kamp et al. 2016). Wildfires and uncontrolled burning may have

serious negative impacts on diversity (cf. Valkó et al. 2014). These processes might lead to

the decrease in the cover of forest component and increase in the cover of grassland

component in the future. Unfortunately, the current system of protected areas is not entirely

sufficient to maintain the biodiversity and ecosystem processes of the forest-steppe biome

(e.g. Rachkovskaya and Bragina 2012; Wesche et al. 2016).

The sandy forest-steppes of Eurasia show an island-like distribution pattern within the

forest-steppe biome (and sometimes in the neighbouring biomes). Their surface is char-

acterised by slightly undulating sand dunes with humus-poor arenosols. Sandy forest-

steppes have a unique flora with many species adapted to extremely dry conditions (cf.

Komarov 1968–2002; Borhidi et al. 2012; Erd}os et al. 2013a). The relatively high number

of endemic plant taxa is related to the temporal and spatial isolation of habitats, special soil

types and geomorphological diversity (Vicherek 1972; Dubyna et al. 1995; Molnár 2003).

Some of these taxa (e.g. Agropyron dasyanthum, Dianthus diutinus and D. serotinus) are

listed on the IUCN global Red List (Bilz 2011; Király and Stevanović 2011; Smekalova

et al. 2011).

Sandy forest-steppes have been relatively well studied in Europe (especially in Hun-

gary); however, information about the species composition and habitat structure of the
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Asian sandy forest-steppes is scarce. Although there are evidences that forest-steppes play

an important role in the preservation of many rare and threatened species, there is a lack of

studies comparing the general community patterns of distant forest-steppe areas. We aimed

to describe the habitat structure and diversity patterns of a Kazakh sandy forest-steppe and

compare these to the westernmost sandy forest-steppe of the Palaearctic, located in

Hungary. We addressed the following questions: (1) Do the plant compositional and

diversity patterns of the European and Asian sandy forest-steppes resemble each other? (2)

Do the components of sandy forest-steppes have a similar role in preserving plant species

in both areas?

Methods

Study areas

Fieldwork was done during the summer of 2016 in two Eurasian calcareous sandy forest-

steppes: the Kiskunság Sand Ridge in Central Hungary (East-Central Europe) and the

Naurzum Nature Reserve in North Kazakhstan (Central Asia), located 3000 km apart from

each other (Fig. 1). In both areas, the soil of the grasslands is a humus-poor sandy soil with

very low water-holding capacity, whereas the soil under forest patches has slightly higher

humus contents and a less extreme microclimate (Erd}os et al. 2014). The surface of both

areas is characterised by slightly undulating, stabilized sand dunes.

Sand dunes in Kiskunság occupy large areas on the plain between the Danube and Tisza

rivers. The re-deposited alluvial sand has originated from the Danube River. The climate is

continental with a strong sub-Mediterranean influence. Mean annual temperature was

11.1 �C (mean January and July temperatures were 1.1 and 22.3 �C, respectively) and

mean annual rainfall was about 600 mm (mean summer rainfall was 195 mm) over the

period 2005–2015 (weather data source: MTA Centre for Ecological Research; for the

village of Fülöpháza). According to Magyari et al. (2010), the grasslands of the area were

continuously present throughout the Holocene. Although the potential vegetation of this

area is forest-steppe, it was almost completely treeless between the fifteenth and nineteenth

centuries due to deforestation (Erd}os et al. 2015). Agriculture and forestry led to the rapid

fragmentation of sandy vegetation, thus only a few stands of sandy forest-steppes could

persist for the twenty-first century (Molnár 2003). Abundant species of the xeric grasslands

within our sites are Alkanna tinctoria, Bothriochloa ischaemum, Crepis foetida subsp.

rhoeadifolia, Dianthus serotinus, Euphorbia seguieriana, Fumana procumbens, Festuca

vaginata, Koeleria glauca, Secale sylvestre, Stipa capillata and Stipa pennata s.l., with a

total vegetation cover of 20–75%. Forest patches have a tree canopy cover of 50–80% and

are dominated by 15–20 m tall Populus alba trees. In the shrub layer, Berberis vulgaris,

Crataegus monogyna, Juniperus communis, Ligustrum vulgare and Rhamnus cathartica

are the most common, with a cover of 2–65%. The most abundant species of the herb layer

in the forests are Asparagus officinalis, Brachypodium sylvaticum, Calamagrostis epigejos,

Carex flacca, Carex liparicarpos, Euphorbia cyparissias and Poa angustifolia. These

grasslands and forest patches are priority habitats of the Natura 2000 ecological network.

UNESCO designated the area ‘Saryarka—Steppe and Lakes of Northern Kazakhstan’ as

a World Heritage Site in 2008, which includes undisturbed areas of Central Asian steppes

and lakes of the Naurzum and Korgalzhyn Nature Reserves. Sandy forest-steppe is one of

the most typical habitats in Naurzum. Sand has an aeolian origin. The climate is strongly
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Fig. 1 Location of the study sites in Hungary (a) and Kazakhstan (b); a deciduous forest patch with
Populus alba in Kiskunság (c); a coniferous forest patch with Pinus sylvestris in Naurzum (d); a xeric sandy
grassland in Kiskunság (e); and a deciduous forest patch with Populus tremula in Naurzum (f)
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continental, with a mean annual temperature of 3.6 �C (mean January and July tempera-

tures were - 17.5 and 20.4 �C, respectively) and a mean annual rainfall of about 280 mm

(mean summer rainfall was 107 mm) for the period 2005–2015 (climate data source: http://

rp5.ru; for the town of Esil). Abundant species of the xeric grasslands within our sites were

Achillea micrantha, Artemisia campestris subsp. inodora, Calamagrostis epigejos, Carex

supina, Festuca beckeri, Galium verum, Potentilla incana, Psephellus sibiricus, Scor-

zonera ensifolia, Stipa capillata and Stipa pennata s.l., with a total vegetation cover of

50–75%. Forest patches have been continuously present throughout the Holocene (Hoff-

mann and Usoltsev 2001). These forests are dominated by either 15–25 m tall evergreen

conifers (Pinus sylvestris), or 5–15 m tall deciduous trees such as Betula pendula, B.

kirghisorum and Populus tremula, with 40–75% tree canopy cover. Deciduous forest

patches are restricted to dune slacks, while coniferous patches usually occur on higher

elevations, in a seemingly irregular pattern embedded in the steppe matrix. Dominant

shrubs of the forest patches include Rhamnus cathartica, Rosa acicularis and Spiraea

hypericifolia. Shrub cover is 0–75%. The most abundant species of the herb layer in the

forests are Agropyron cristatum agg., Artemisia pontica, Bromus inermis, Calamagrostis

epigejos, Hierochloe odorata, Elymus repens and Lathyrus pratensis.

Sampling

We studied three sites in both areas (1: N46�400, E19�270; 2: N46�520, E19�240; 3: N47�650,
E19�230 in Kiskunság and 1: N51�320, E64�250; 2: N51�310, E64�280, 3: N51�290, E64�270

in Naurzum), located at least 2 km from each other. We randomly selected three deciduous

forest, three deciduous forest edge and three grassland plots in each site in both Kiskunság

and Naurzum. Furthermore, three coniferous forest and three coniferous forest edge plots

were also selected per each site in Naurzum. The average distance between two plots

within a site was around 100 m. We selected large forest patches ([ 0.5 ha) to minimise

the confounding effect of edge influence in the forest interiors (cf. Murcia 1995). Forest

edges were defined as the zones outwards from the outmost tree trunks, but still under the

tree canopy. Since north-facing edges are expected to have the most distinct vegetation

among differently oriented edges (Fraver 1994; Erd}os et al. 2013a), only these ones were

considered in the study.

The size of the grassland and forest plots was 5 9 5 m2, while we used 2 9 12.5 m2

plots in the edges for a better representation of the vegetation of these narrow micro-

habitats. Previous studies (Erd}os et al. 2013a, 2014) suggested that plant species turnover

at the forest edges of sandy forest-steppes varies along complex environmental gradients

oriented both parallel and perpendicular to the axis of the edges; therefore, quadrat shape

has no significant effect on vegetation descriptors in the present spatial scale (cf. Keeley

and Fotheringham 2005). Our vegetation dataset contained a total of 72 (27 in Kiskunság

and 45 in Naurzum) 25 m2 plots, in which we recorded the percentage cover of all herbs,

shrubs and tree saplings (with a height up to 50 cm).

Statistical analyses

To detect differences among the species composition of forest patches, edges and grass-

lands, detrended correspondence analysis (DCA, Hill and Gauch 1980) was carried out on

the plots of the two areas (Kiskunság and Naurzum) based on the untransformed plant

percentage cover data. Default number of segments (26) was used for detrending. Separate

ordinations were carried out: (i) to characterise the habitat structure of the sandy forest-
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steppe in Naurzum, including all plots of this area and (ii) to compare the habitat structure

in Kiskunság and Naurzum, by focusing only on habitats that these areas share in common

(deciduous forests, deciduous forest edges and grasslands). DCA ordinations were per-

formed using the vegan package of R (R Development Core Team 2013; Oksanen et al.

2015).

Species frequencies and diagnostic plant taxa were determined for all habitat types in

Naurzum, and for the deciduous forests, deciduous forest edges and grasslands in Kis-

kunság and Naurzum, respectively. The diagnostic value of each taxon for each habitat was

calculated using the phi (U) coefficient as a measure of fidelity (Chytrý et al. 2002). The

threshold value of U was 0.3. Non-diagnostic plant taxa were excluded with Fisher’s exact

test (p\ 0.05). In the rare case when a species appeared to be diagnostic for two habitats,

only the habitat with higher U value was considered. Calculations were done with the

JUICE 7.0.25 program (Tichý 2002).

Plant taxa were classified into five groups (xerophilous sand, zonal steppe, meadow,

forest and generalist species) according to their habitat preference (Király 2009; Komarov

1968–2002). All habitat types were characterised by the average plant cover belonging to

the same group.

Species number, Shannon diversity and species evenness values were calculated for

each plot in R environment. Linear mixed-effects models (LMMs) with Gaussian error

term were built to reveal the effect of habitat type on these values. Site within the two

study areas was included as a random variable. One LMM was built for the entire dataset

of Naurzum, with five levels of habitat type (deciduous forest, deciduous forest edge,

grassland, coniferous forest and coniferous forest edge), and another one jointly for the two

study areas (Kiskunság and Naurzum), but including only those habitat types that occurred

in both study areas (deciduous forest, deciduous forest edge and grassland). In the second

set of LMMs, study area (Kiskunság and Naurzum) was also included as a second fixed

factor besides habitat type and the interaction between the effects of study area and habitat

type was also calculated. LMMs were built in R environment using the lme function of the

nlme package (Pinheiro et al. 2015). Pairwise comparisons of the factor levels were

assisted with the relevel function and primary p-values were corrected for multiple com-

parisons using the FDR (false discovery rate) method.

Nomenclature follows ‘The Plant List’ (www.theplantlist.org).

Results

Habitat structure and diversity patterns in Naurzum

The DCA revealed clear differences among the deciduous forests, coniferous forests and

grasslands in Naurzum. However, deciduous forest edge plots were rather similar to

deciduous forest and coniferous forest plots, while coniferous forest edge plots were

scattered between grassland and coniferous forest plots (Fig. 2). Axis one opposed

deciduous forest plots, on the left, and grassland plots, on the right. Among the deciduous

forest and deciduous forest edge plots, there was a considerable variation, whereas

grassland plots were more similar to each other.

Deciduous forests and grasslands had 15 diagnostic plant taxa each (equalling 29.4 and

46.9% of their species pool, respectively). The number of diagnostic plant taxa was

similarly high in deciduous forest edges (14 plant taxa; 23.7% of the total species pool of
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this habitat). However, there were only two diagnostic plant taxa in coniferous forests

(6.7% of total species pool of this habitat) and two in coniferous forest edges (5.3% of total

species pool of this habitat), respectively. The list of diagnostic plant taxa is given in

Table 1.

The cover of xerophilous sand plants (e.g. Bassia laniflora, Jurinea cyanoides and

Scorzonera ensifolia) was high in grasslands [average cover (%) of this species group was

55.2 ± 4.0 (mean ± SE)] and coniferous forest edges (15.4 ± 2.8) and low in deciduous

forests (1.7 ± 0.7). Zonal steppe plants (e.g. Artemisia pontica, Festuca valesiaca and

Thalictrum minus) had a relatively high cover in all habitats (7.9–38.6 ± 1.3–7.5), with an

especially high cover in deciduous forests (26.0 ± 5.7) and deciduous forest edges

(38.6 ± 7.5), and the lowest cover in grasslands (7.9 ± 1.3). Meadow plants (e.g. Arte-

misia dracunculus, Lathyrus pratensis and Tanacetum vulgare) had a high cover in

deciduous forests (12.3 ± 2.4), deciduous forest edges (14.9 ± 3.2) and coniferous forests

(12.2 ± 4.1). The cover of forest plants (e.g. Lithospermum officinale, Rhamnus cathartica

and Rosa acicularis) and generalists (e.g. Calamagrostis epigejos, Chenopodium album

and Elymus repens) was the highest in deciduous forests (11.9 ± 6.2 and 19.0 ± 6.0,

respectively) (Fig. 3).

The highest species richness was found in the deciduous forest edges, while the lowest

one was in the coniferous forests (Fig. 4, Table 2). Coniferous forests also had the lowest

Shannon diversity values, while deciduous forests, deciduous forest edges and grasslands

had similarly high values and coniferous forest edges were intermediate. Species evenness

values showed no significant differences between any of the studied habitat types in

Naurzum.

Fig. 2 DCA ordination diagram for the plots of Naurzum based on the untransformed plant percentage
cover data. Default number of segments (26) was used for detrending. Eigenvalues were 0.76 and 0.43 for
axis 1 and 2, respectively. Gradient length was 5.1 SD units for the first axis. DFN deciduous forest, DEN
deciduous forest edge, GLN grassland, CFN coniferous forest, CEN coniferous forest edge
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Table 1 Synoptic table of the sandy forest-steppe habitats (deciduous forests, deciduous forest edges,
grasslands, coniferous forests and coniferous forest edges) in Naurzum with percentage frequency of
diagnostic species (values in boldface)

Deciduous forests

Thalictrum minus 3353.5 – – – –

Rosa acicularis 7850.4 7850.4 – – –

Rhamnus cathartica 5644.4 44 – – –

Salix rosmarinifolia 2243.1 – – – –

Lithospermum officinale 2243.1 – – – –

Lathyrus pratensis 2243.1 – – – –

Hieracium umbellatum 2243.1 – – – –

Iris sp. 3342.9 11 – – –

Asparagus officinalis 8942.3 56 – 67 22

Artemisia pontica 6741.7 56 – 22 –

Populus tremula 4439.9 33 – – –

Betula pendula 4439.9 33 – – –

Adonis volgensis 4439.9 33 – – –

Elymus repens 5636.2 33 – 11 22

Tanacetum vulgare 3335.4 22 – – –

Deciduous forest edges

Poa pratensis agg. 56 8966.2 – – –

Galatella sp. – 4462.5 – – –

Achillea setacea 11 5662.1 – – –

Allium lineare 44 10058.5 – 33 33

Festuca valesiaca 22 6753.5 – 11 11

Veronica spuria 44 8952.7 – 22 33

Galium verum 22 8952.7 22 22 33

Equisetum hyemale 67 8952.7 – 22 11

Rosa acicularis 7850.4 7850.4 – – –

Chondrilla brevirostris – 2243.1 – – –

Glycyrrhiza uralensis 44 5640.1 – 11 –

Spiraea hypericifolia 44 6738.4 – 22 22

Artemisia dracunculus 22 3335.4 – – –

Hierochloe odorata 67 8933.5 33 78 11

Grasslands

Achillea micrantha – 11 10082.9 – 22

Potentilla incana – – 8980.2 – 22

Psephellus sibiricus – 11 8975.0 – 22

Alyssum lenense – – 5670.7 – –

Jurinea cyanoides – – 4462.5 – –

Bassia laniflora – 22 7862.1 – 22

Scorzonera ensifolia – 44 10058.5 11 56

Festuca beckeri – 33 10053.5 11 8942.3

Cleistogenes squarrosa – – 4453.0 – 11

Gypsophila paniculata 22 44 10046.8 22 78

Scorzonera sp. – – 4445.8 – 22
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Table 1 continued

Asperula graveolens subsp. danilewskiana – – 2243.1 – –

Stipa pennata s.l./S. capillata 22 67 10042.7 11 8931.5

Eremogone procera – 11 4439.9 – 22

Artemisia campestris subsp. inodora – 44 6735.4 – 56

Coniferous forests

Ephedra distachya – – – 3353.5 –

Ribes saxatile 22 11 – 5649.4 –

Coniferous forest edges

Pinus sylvestris – 11 – 56 10070.7

Koeleria glauca – 67 56 11 7836.0

Within blocks of diagnostic species, species are ranked by decreasing fidelity (U 9 100, superscript
numbers). Rosa acicularis was diagnostic for two habitats

Fig. 3 Proportions of the habitat preference groups of the sandy forest-steppe habitats in Naurzum and
Kiskunság. Naurzum: DFN deciduous forest, DEN deciduous forest edge, GLN grassland, CFN coniferous
forest, CEN coniferous forest edge; Kiskunság: DFK deciduous forest, DEK deciduous forest edge, GLK
grassland

1020 Biodivers Conserv (2018) 27:1011–1030

123



Fig. 4 Species richness,
Shannon diversity and species
evenness of the sandy forest-
steppe habitats in Kiskunság and
Naurzum. Lower case letters
indicate significant differences
found with two separate linear
mixed-effects models. One model
was built for the five habitats in
Naurzum (letters a–c) and
another one for those habitats that
Kiskunság and Naurzum have in
common (letters i–l). Kiskunság:
DFK deciduous forest, DEK
deciduous forest edge, and GLK
grassland; Naurzum: DFN
deciduous forest, DEN deciduous
forest edge, GLN grassland, CFN
coniferous forest, and CEN
coniferous forest edge
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Comparison of the deciduous forest–grassland mosaics in Kiskunság
and Naurzum

DCAs revealed similar patterns in Kiskunság and Naurzum, with a considerable overlap

between deciduous forests and edges in the ordination space. However, grassland plots

formed a distinct group along the first axis, and they were very similar to one another in

both areas (Fig. 5).

The highest number of diagnostic plant taxa was found in the grasslands and the lowest

in the forests both in Kiskunság (19 and 5 species, respectively) and Naurzum (15 and 2

species, respectively). The number of diagnostic plant taxa was intermediate in the edges

(11 species in Kiskunság and 10 species in Naurzum) (see Supplementary Material Online

Resources 1 and 2).

The cover of xerophilous sand plants was the highest in the grasslands in both areas

[average cover (%) of this species group was 40.3 ± 3.6 (mean ± SE) in Kiskunság].

Zonal steppe plants had the highest cover in the deciduous forest edges (15.6 ± 3.0 in

Kiskunság); however, the cover of forest plants in Kiskunság (10.7 ± 4.3) and the cover of

meadow plants in Naurzum were also considerable. The cover of forest plants and gen-

eralists was the highest in deciduous forests in both areas (18.9 ± 7.5 and 22.6 ± 6.8 in

Kiskunság, respectively) (Fig. 3). The cover data of the species groups for the habitat types

of Naurzum are given in the previous section.

Species richness was significantly higher in Kiskunság than in Naurzum. Among the

three habitat types, deciduous forest edges were the most species rich, while grasslands and

deciduous forests had lower values (Fig. 4, Table 3). Shannon diversity was higher in

Naurzum than in Kiskunság. Edges tended to have a higher diversity than grasslands, while

deciduous forests did not differ from the other habitat types in this respect. Study area had

a significant effect on species evenness, with the higher values in Naurzum. Habitat type,

however, had no detectable effect on evenness. Neither of the LMMs confirmed significant

interactions between the explanatory variables (area and habitat type), indicating that the

Table 2 Pairwise comparisons of the five habitat types of Naurzum based on linear mixed-effects models

Species richness Shannon diversity Species evenness

t p t p t p

CEN vs CFN - 2.724 0.014 - 2.434 0.030 0.719 0.886

CEN vs DEN 5.771 < 0.001 3.509 0.003 0.165 0.886

CEN vs DFN 1.751 0.111 2.591 0.028 1.803 0.400

CEN vs GLN 1.621 0.127 2.065 0.066 0.574 0.886

CFN vs DEN 8.459 < 0.001 5.524 < 0.001 - 0.429 0.886

CFN vs DFN 4.474 < 0.001 4.606 < 0.001 1.209 0.588

CFN vs GLN 4.345 < 0.001 4.499 < 0.001 - 0.144 0.886

DEN vs DFN - 4.021 < 0.001 - 1.109 0.306 1.981 0.400

DEN vs GLN - 4.150 < 0.001 - 1.800 0.101 0.309 0.886

DFN vs GLN - 0.130 0.898 - 0.882 0.384 - 1.329 0.588

Significant differences are indicated with boldface; p-values were corrected with the FDR method

DFN deciduous forest, DEN deciduous forest edge, GLN grassland, CFN coniferous forest, CEN coniferous
forest edge
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relations of habitat types are largely independent of the area and the differences and

similarities between the areas are largely independent of the habitat type (Table 3).

Fig. 5 DCA ordination diagrams for the plots of Kiskunság and Naurzum based on the untransformed plant
percentage cover data. Default number of segments (26) was used for detrending. Axis 1 and 2 eigenvalues
were 0.89 and 0.50 for Kiskunság, and 0.80 and 0.43 for Naurzum. Gradient length was 6.6 and 4.9 SD units
for the first axis in Kiskunság and Naurzum, respectively. Kiskunság: DFK deciduous forest, DEK
deciduous forest edge, GLK grassland; Naurzum: DFN deciduous forest, DEN deciduous forest edge, GLN
grassland
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Discussion

Despite the large geographical distance between the two investigated Eurasian sandy

forest-steppes, their habitat structure and diversity patterns are similar and their compo-

nents play important roles in the preservation of different groups of plant species. Our

results also highlight the importance of forest edges as an integral component of this

heterogeneous landscape and their role in maintaining landscape-scale diversity.

We found that the deciduous forest edges of both areas had higher species richness and

Shannon diversity than the neighbouring habitats (Fig. 4). As indicated by the DCA

ordinations (Fig. 5), their vegetation seems to be more similar to forest interiors than to

grasslands, which is in line with some previous studies (e.g. Jakucs 1972; Mészáros 1990;

Orczewska and Glista 2005). Thus, these edges may be regarded as parts of the forests in

the studied habitat mosaic. However, it is important to point out that deciduous forest edges

of the sandy forest-steppes are remarkably different from forest interiors in several

respects. Their greater species richness and Shannon diversity, the high number of diag-

nostic species (Table 1) (Erd}os et al. 2013a) and the habitat preference of their species

(Fig. 3) indicate that forest interiors and edges could be regarded as separate vegetation

units. Our findings are in line with earlier results conducted in sandy forest–grassland

mosaics in Europe. For example, Molnár (1998) found that forest edges possess their own

species that are rare or absent in forest interiors (i.e. edge-related species). Also, life-form

spectra and abiotic parameters (e.g. air humidity, soil moisture and temperature) of forest

edges proved to differ strongly from those of the forest interiors (Erd}os et al. 2014). These

studies, as well as some of our present findings suggest that deciduous forest edges form a

well-defined component in the mosaics of the sandy forest-steppes in both Europe and

Asia. Although species richness and Shannon diversity were significantly higher in

coniferous forest edges than in coniferous forests, we did not find any significant differ-

ences between these edges and grasslands. The number of diagnostic species was very low

both in coniferous forests and their edges. These results are in line with previous studies

(Kelly and Connolly 2000; Fekete et al. 2014) which have shown that the number of

Table 3 Results of the linear mixed-effects models performed on the habitat types of Kiskunság and
Naurzum

Species richness Shannon diversity Species evenness

t p t p t p

Area: habitat (DE and DF) 1.165 0.351 0.764 0.629 1.472 0.261

Area: habitat (DE and GL) 1.910 0.110 0.551 0.683 - 0.159 0.875

Area: habitat (DF and GL) 0.745 0.460 - 0.186 0.853 - 1.544 0.261

Kiskunság vs Naurzum - 4.713 0.005 5.000 0.007 8.376 < 0.001

DE vs DF - 6.825 < 0.001 - 2.324 0.058 2.102 0.144

DE vs GL - 7.742 < 0.001 - 3.504 0.007 0.682 0.582

DF vs GL - 0.916 0.426 - 1.244 0.385 - 1.320 0.271

The upper three data rows detail the interactions between areas (Kiskunság and Naurzum) and habitat (every
pair formed from the three habitat types); the rest of the data belong to the main effects. Significant
differences are indicated with boldface; p-values were corrected with the FDR method

DF deciduous forest, DE deciduous forest edge, GL grassland
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acidophilic species (i.e. diagnostic species of coniferous forests) in the continental xeric

Pinus sylvestris forests on calcareous sands may be highly variable and these forests may

also contain many xeric grassland species such as Carex supina, Potentilla incana and

Stipa capillata.

Species richness was higher in Kiskunság than in Naurzum (Fig. 4). The explanation for

this pattern is likely related to regional (e.g. macroclimate and biogeographical patterns)

and local (e.g. human disturbances and vegetation history) factors. Increasing continen-

tality to the east (decreasing temperature, shorter frost-free period, increasing aridity and

higher intra- and inter-annual temperature variation) results in reduced species richness

(Berg 1958; Zlotin 2002; Chibilyov 2002). As Hungary is near the western border of the

forest-steppe biome, continentality is tempered by the Atlantic Ocean. In addition, the

Atlantic and continental climate effects are further diversified by considerable Mediter-

ranean influences (see climate data of the areas). Consequently, the Carpathian Basin,

surrounded by the Alps, Carpathians and Dinarides is a biogeographically diverse region

(Varga 1995), which allows for the coexistence of different floristic elements and therefore

increases the species pool of forest-steppes (Molnár et al. 2012; Erd}os et al. 2014). Within

the forest-steppe zone, human influence tends to decrease when proceeding to the east,

especially east of the Ural Mountains (Zlotin 2002; Chibilyov 2002), although edaphic

forest-steppes are usually less affected by human activity throughout the biome (Sme-

lansky and Tishkov 2012). However, the relatively high number of generalists (including

several non-indigenous plants) in Kiskunság is likely due to the direct and indirect effects

of human disturbance, including afforestation, canalisation, overgrazing, road and highway

construction, and agricultural activity (cf. Molnár et al. 2012; Biró et al. 2013; Kelemen

et al. 2016). In addition, despite the relatively long treeless period between the fifteenth and

nineteenth centuries in Central Hungary (Erd}os et al. 2015), the number of forest plants

was also much higher in Kiskunság than in Naurzum (Fig. 3).

Despite the higher species richness in Kiskunság, Shannon diversity was higher in

Naurzum (Fig. 4). This is due to the increased species evenness in Naurzum, which may

correspond to some forms of disturbance. Disturbance often acts selectively on particular

taxa, but its non-selective form may prevent competitive exclusion and therefore increase

the species evenness in a community (Huston 1979; Cardinale et al. 2000). For example,

fire has a great impact on the diversity patterns of terrestrial ecosystems, by potentially

increasing the evenness of many taxa, including plants (Peltzer et al. 2000; Morrison 2002;

Kemball et al. 2005). In Kazakhstan, millions of hectares of steppes burn every year,

caused either by thunderstorms or humans (Kamp et al. 2016). Steppe and forest fires

regularly occur in Naurzum (UNESCO nomination dossier of ‘Saryarka—Steppe and

Lakes of Northern Kazakhstan’). Besides fire, grazing (Hartnett et al. 1996; Sankaran

2005) and climatic constraints (Hillebrand et al. 2008) may also be responsible for the

observed patterns of species evenness via altering competition in the communities.

However, further investigations are needed to more accurately determine the effects of

different disturbance types on the diversity patterns of Eurasian forest-steppes.

Anthropogenic climate change poses a great threat to the biodiversity of steppe and

forest-steppe ecosystems (Kamp et al. 2016). Species may respond to climate changes by

range-shifting (Holt 1990; Chen et al. 2011) and by persisting in environmentally

stable habitats (Willis et al. 2000; Bátori et al. 2017). Stable habitats buffered from

environmental change (e.g. increased temperature and drought) are known as refugia

(Ashcroft 2010). Paleoecological and biogeographical studies show evidence of such sites

enabling the persistence of many taxa during past climate changes and suggest that refugia

are likely to play important roles in facilitating species persistence under global warming
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(Stewart et al. 2010; Bátori et al. 2014). For example, basins, local depressions and ravines

may serve as refugia for cold-adapted species, or mesic sites surrounded by arid habitats

for mesic species (Dobrowski 2010; Keppel et al. 2012; Bátori et al. 2017; McLaughlin

et al. 2017). Our results show that the forest patches and forest edges of Eurasian sandy

forest-steppes play important roles in preserving zonal steppe and meadow plants (e.g.

Asparagus officinalis, Galium verum and Hierochloe odorata) that are adapted to relatively

mesic conditions. If climate continues to warm, as expected (Solomon et al. 2007), many of

these forest patches may not persist as refugia for these species over longer time scales (cf.

Dulamsuren et al. 2010, 2014).

Forest-steppes are among the most vulnerable biomes due to extensive habitat loss and

under-protection (Berg 1958; Hoekstra et al. 2005). For example, only 6.8% of the total

forest-steppe vegetation has survived in Hungary (Molnár et al. 2012). However, the

situation is much better in the central and eastern parts of the biome (Lavrenko and

Karamysheva 1993; Zlotin 2002; Smelansky and Tishkov 2012), where larger forest-steppe

areas have remained intact. Both investigated sandy forest-steppe areas presented a high

diversity in terms of species composition and vegetation structure (Figs. 3, 4). The unique

flora and vegetation of the studied sites have a high conservation value. In Kiskunság,

many protected and/or endemic plant species occur both in the grasslands (e.g. Dianthus

serotinus, Iris humilis and Tragopogon floccosus) and in the forest patches (e.g. Cepha-

lanthera rubra and Epipactis bugacensis) and also in the forest edges (e.g. Epipactis

atrorubens); (Erd}os et al. 2013a, 2014). Almost all of these species have been placed on the

Hungarian Red List (Király 2007). The forest patches in Naurzum provide habitat for an

endemic tree species (Betula kirghisorum), which is listed in the Red Book of Kazakhstan

(Rachkovskaya and Bragina 2012). Adonis volgensis, Stipa pennata s.l. and Tulipa spp. are

also important from a conservation point of view. The remaining sandy-forest steppes are

at risk of degradation or disappearance in the upcoming decades. The grassland component

in Hungary is threatened by the invasion of Asclepias syriaca and Robinia pseudoacacia

(Molnár et al. 2012; Kelemen et al. 2016) and the forest-component is often highly

degraded or completely eliminated by human activities (Erd}os et al. 2014). The temporal

increase of fire frequency may threaten both the grasslands and forests in Naurzum

(UNESCO nomination dossier of ‘Saryarka—Steppe and Lakes of Northern Kazakhstan’).

Since edges cannot exist without intact forest and grassland patches, these processes have

an impact on the diverse vegetation of edges as well. Therefore, improving our under-

standing of the factors and processes that affect these unique ecosystems is vital for

establishing effective conservation strategies.

Our study provides baseline information on the species composition and habitat

structure of the sandy forest-steppes in Kazakhstan. The results suggest that sandy forest-

steppes are complex ecosystems within the temperate zone of Eurasia. Due to the special

characteristics of this vegetation complex, we emphasize the conservation value of all

components, including grasslands, forest patches and their edges. Determining the

potential impacts of climate change and other drivers of degradation on these habitats

allows their protection and the selection of the most appropriate conservation strategies.
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Erd}os L, Gallé R, Bátori Z et al (2011) Properties of shrubforest edges: a case study from South Hungary.
Cent Eur J Biol 6:639–658

Erd}os L, Cserhalmi D, Bátori Z et al (2013a) Shrub encroachment in a wooded-steppe mosaic: combining
GIS methods with landscape historical analysis. Appl Ecol Environ Res 11:371–384
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Mathar WP, Kämpf I, Kleinebecker T et al (2016) Floristic diversity of meadow steppes in the Western
Siberian Plain: effects of abiotic site conditions, management and landscape structure. Biodivers
Conserv 25:2361–2379

McLaughlin BC, Ackerly DD, Klos PZ, Natali J, Dawson TE, Thompson S (2017) Hydrologic refugia,
plants, and climate change. Glob Change Biol. https://doi.org/10.1111/gcb.13629
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